钛基氧化物电极导致的H_2O_2分解及其对苯胺氧化的影响  被引量:3

Decomposition of H_2O_2 caused by Ti-based oxide electrode and its influence on oxidation of aniline

在线阅读下载全文

作  者:褚衍洋[1] 王蒙[1] 

机构地区:[1]青岛科技大学环境与安全工程学院,山东青岛266042

出  处:《化工学报》2010年第3期761-766,共6页CIESC Journal

基  金:国家自然科学基金项目(50808103)~~

摘  要:The decomposition of H2O2 at the Ti-based oxide electrode coated with IrO2,RuO2 and TiO2 (Ti/ IrO2/RuO2/TiO2) prepared by thermal decomposition,was investigated in the electrolysis system of constant potential and the non-electrolysis system respectively.Additionally,the influence of the decomposition of H2O2 caused by Ti-based oxide electrode on the oxidation of aniline was also investigated.The results showed that both higher loading of oxides and higher pH were able to accelerate the decomposition of H2O2 in the non-electrolysis system and in this case the decay of H2O2 was mainly caused by the catalytic action of the oxides coating.In the electrolysis system with Ti-based oxides electrode as anode,the decay rate of H2O2 increased with increasing anodic potential.In this case,the decay of H2O2 involved two mechanisms: catalytic decomposition and electrochemical oxidation.It was also found that the catalytic decomposition of H2O2 at the oxides electrode was useless to the oxidation of aniline while the electrochemical oxidation of H2O2 was only slightly helpful to the oxidation of aniline.This work suggested that using the appropriate anodes of less H2O2 decomposition as well as reasonable potential in the electro-Fenton process could achieve high chemical efficiency of H2O2.The decomposition of H2O2 at the Ti-based oxide electrode coated with IrO2,RuO2 and TiO2 (Ti/ IrO2/RuO2/TiO2) prepared by thermal decomposition,was investigated in the electrolysis system of constant potential and the non-electrolysis system respectively.Additionally,the influence of the decomposition of H2O2 caused by Ti-based oxide electrode on the oxidation of aniline was also investigated.The results showed that both higher loading of oxides and higher pH were able to accelerate the decomposition of H2O2 in the non-electrolysis system and in this case the decay of H2O2 was mainly caused by the catalytic action of the oxides coating.In the electrolysis system with Ti-based oxides electrode as anode,the decay rate of H2O2 increased with increasing anodic potential.In this case,the decay of H2O2 involved two mechanisms: catalytic decomposition and electrochemical oxidation.It was also found that the catalytic decomposition of H2O2 at the oxides electrode was useless to the oxidation of aniline while the electrochemical oxidation of H2O2 was only slightly helpful to the oxidation of aniline.This work suggested that using the appropriate anodes of less H2O2 decomposition as well as reasonable potential in the electro-Fenton process could achieve high chemical efficiency of H2O2.

关 键 词:钛基氧化物电极 H2O2 催化分解 电化学氧化 苯胺 

分 类 号:X703.1[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象