基于重复预测原理的三电平APF无差拍控制方法  被引量:45

A Deadbeat Control Algorithm Based on Repetitive Predictor Theory for Three-Level Active Power Filter

在线阅读下载全文

作  者:何英杰[1] 刘进军[1] 王兆安[1] 唐健[2] 邹云屏[2] 

机构地区:[1]西安交通大学电气工程学院,西安710049 [2]华中科技大学电气与电子工程学院,武汉430074

出  处:《电工技术学报》2010年第2期114-120,133,共8页Transactions of China Electrotechnical Society

基  金:中国博士后基金特别资助项目(200801429);台达电力电子科教发展基金资助项目(DREG2009003)

摘  要:传统两电平有源电力滤波器(APF)由于功率开关耐压水平和载流能力的限制,难以实现对高压大容量非线性负载的谐波补偿。在高压大容量系统中,二极管钳位型三电平变流器得到了广泛的研究和应用。本文研究一种基于重复预测原理的三电平APF无差拍控制方法,通过推导分析,发现消除采样周期的延迟和对输出指令电流的预测是决定无差拍控制效果的关键。采用状态观测器,对APF下一拍输出电流进行估计,弥补了数字控制系统一个载波周期的延时;采用重复预测型观测器,对指令谐波电流进行预测,可以提供精确的谐波电流预测值,因而改善了整个系统的控制效果。实验结果证明了所提控制方法的可行性。Due to the limitation of voltage capability and current capability of power devices,it is very difficult to handle nonlinear loads for the traditional active power filter(APF)with two-level inverter in high voltage high power grid.Three-level inverter has been put into research and practical use for years especially in high voltage high power grid.This paper researches a deadbeat control algorithm based on repetitive predictor theory for three-level active power filter.In this paper, canceling the delay of one sampling period and providing the predictive value of the harmonic current is the key problem of the deadbeat control.Based on this deadbeat control,the predictive output current value is obtained by the state predictor.The state predictor remedies the delay of one sampling period in this digital control system.The predictive harmonic command current value is obtained by the repetitive predictor synchronously.The repetitive predictor can achieve the prediction of the harmonic current accurately,thus improve the overall performance of the system.Experimental result confirms the validity of the proposed approach.

关 键 词:有源电力滤波器 三电平变流器 重复预测型观测器 无差拍控制 状态观测器 

分 类 号:TM721[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象