检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李光珍[1] 刘文颖[1] 云会周[1] 高玉华[1]
机构地区:[1]华北电力大学电气与电子工程学院,北京市昌平区102206
出 处:《电网技术》2010年第2期149-154,共6页Power System Technology
摘 要:选择SCADA量测数据作为原始数据源,针对目前母线负荷数据中3类典型的异常数据,提出了一种样本数据预处理方法。采用改进的数据横向比较法识别并修正数据丢失点和由突发事件等原因引起的异常突变点,随后采用db4小波阀值去噪法处理由信道噪声等原因引起的数据波动,使负荷曲线平滑化。该方法能够有效识别连续数据丢失点和异常突变点,在保持原有负荷曲线变化趋势的基础上剔除异常波动数据,实现平滑处理,为下一步直接进行母线负荷预测提供高质量的样本数据,在一定程度上提高最终的预测精度。Selecting the measured data from SCADA as original data source, a data pre-processing method for sample data is proposed to deal with three kinds of typical abnormal data in bus load data. The improved horizontal comparison is used to recognize and modify the points where data is lost and the abnormal catastrophe points of data caused by sudden event; and then the data fluctuation due to channel noise and other reasons are dealt with by db4 wavelet threshold denoising method to smooth the load curve. The proposed method can effectively recognize continuous points where data is lost and abnormal catastrophe points of data, and on the basis of keeping variation trend of original load curve the abnormal fluctuate data is rejected, thus the smoothing processing is implemented and the pre-processed high quality sample data can be provided for subsequent bus load forecasting, and the accuracy of final bus load forecasting can be improved to a centain extent.
关 键 词:母线负荷预测 异常数据 数据预处理 数据横向比较法 小波阀值去噪法
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3