检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕永乐[1] 郎荣玲[1] 路辉[1] 谈展中[1]
机构地区:[1]北京航空航天大学电子信息工程学院,北京100191
出 处:《北京航空航天大学学报》2010年第2期131-134,149,共5页Journal of Beijing University of Aeronautics and Astronautics
基 金:国防"十一五"预研项目(102010201)
摘 要:排气温度是最能反映航空发动机运行状态的性能参数之一.对连续飞行班次的起飞排气温度裕度(EGTM,Exhaust Gas Temperature Margin)参数进行预测分析,有助于判知航空发动机将来的工作性能,为预防和排除故障提供充分的时间和决策依据.在依据具有非线性、非平稳特征的起飞EGTM历史监测值序列构建预测模型时,基于奇异值分解滤波算法提出了一种联合径向基函数预测网络(RBFPN,Radial Basis Function Prediction Networks)和函数系数自回归模型(FAR,Functional-coefficient Auto Regressive model)的预测方案,充分发挥RBFPN和FAR在预测EGTM参数值变动趋势成分和随机成分的各自优势,使其互为补充,协同处理.实验结果表明该联合预测方案能够有效抑制RBFPN或FAR单独采用时所呈现出的不足,提高预测性能.Exhaust gas temperature is one of the performance parameters which reflect aeroengines' running state most efficiently. The prediction analysis of the sequent takeoff exhaust gas temperature margin (EGTM) is helpful to estimate aeroengines' future working performance, which can offer sufficient time reference and decision-making support for the fault prevention and elimination. When building the prediction model according to the EGTM historical observation sequence which was characterized by nonlinearity and nonstationarity, a solution combining radial basis function prediction networks (RBFPN) and functional coefficient autoregressive model (FAR) was proposed based on the sequence partition with singular value decomposition filtering algorithm. The respective advantages of RBFPN and FAR in modeling the trend element and the random element of EGTM sequence were taken complementally and cooperatively. It is indicated by experimentation that the solution can effectively restrain the shortcomings of separate employment of RBFPN or FAR, and improve the prediction performance.
关 键 词:预测建模 发动机排气温度裕度 径向基函数预测网络 函数系数自回归 模型
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90