检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:洪杰[1] 高金海[1] 马艳红[1] 王建军[1]
机构地区:[1]北京航空航天大学能源与动力工程学院,北京100191
出 处:《航空动力学报》2010年第2期388-395,共8页Journal of Aerospace Power
基 金:教育部新世纪优秀人才支持计划(NCET-06-0171)
摘 要:准确考虑火焰筒温度场和应力场的"局部"特性,提出"局部蠕变屈曲"概念,并给出一套局部蠕变屈曲分析方法.基于Hoff理论建立蠕变屈曲理论模型,结合理论和试验数据验证有限元方法处理蠕变屈曲问题的可行性.考虑蠕变屈曲失稳要素,结合静力结果确定蠕变屈曲危险部位,将子模型技术引入非线性/热弹塑性/蠕变有限元程序中,结合曲率极大点判据,确定危险部位蠕变屈曲临界时间.方法将改善传统方法中的平均温度、平均压应力和平面应变假设,提高了计算精度.In consideration of the "local" feature of combustor liner temperature field and stress field, a concept of "local creep buckling" was presented in this paper along with an engineering analysis method. Firstly, the theoretical model of creep buckling was established based on Hoff theory. Secondly, the feasibility of using finite element method (FEM) to analyze creep buckling was validated by theoretical and test data. Thirdly, a statics analysis with thermal-mechanical loads was performed, and then the dangerous place of combustor liner local creep buckling was captured considering creep buckling instability factors. Finally, sub-model technique was used in nonlinear thermal elastic-plastic/creep finite element analysis to capture the critical time of local creep buckling with "curvature local maximum point" criterion. It could be concluded that, as compared with traditional method, the hypothesis of average temperature, average compressive stress and plane strain could be improved in this paper, thus the computational accuracy was enhanced greatly. The work of this paper is significant on the application of structure design of combustor liner.
关 键 词:火焰筒 局部蠕变屈曲 有限元法 子模型技术 临界时间
分 类 号:V231.95[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.9