检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:晏鹏宇[1] 车阿大[1] 李鹏[1] 杨乃定[1]
出 处:《计算机集成制造系统》2010年第2期404-410,共7页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(50605052);新世纪优秀人才支持计划资助项目(NCET-06-0875)~~
摘 要:为克服传统遗传算法在求解具有柔性加工时间的机器人制造单元调度问题时易出现早熟收敛、冗余迭代等缺陷,提出了改进遗传算法。该算法采用基于工件搬运顺序的染色体编码,并根据调度问题特征,设计构造型启发式算法来生成初始种群,避免了大量不可行染色体的产生,提高了后续操作的优化质量。同时,在交叉变异操作中引入局部邻域搜索,通过对子代邻域的局部寻优提高了算法的收敛速度。最后,分别应用该算法和传统遗传算法求解六个基准案例,实验结果验证了该算法的有效性。An improved Genetic Algorithm (GA) was proposed to overcome premature convergence and redundant iterations by using traditional GA to solve the scheduling problem in robotic cell with flexible processing time. This algorithm adopted the encoding scheme based on part moving sequence. According to the characterstics of this scheduling problem,a new constructive heuristic method was designed to generate initial populations which eliminated large amout of infeasible chromosomes and improved the solution quality in the subsequent operations. At the same time,a local search was introduced to improve the efficiency of algorithm in the crossover and mutation operations. Finally,the proposed algorithm was compared to the traditional GA by solving six benchmark problems. Computation results proved the effectiveness of the improved GA.
分 类 号:O211.1[理学—概率论与数理统计] TP278[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.29.244