Linear Integral Analysis of Bar Rough Rolling by Strain Rate Vector  

Linear Integral Analysis of Bar Rough Rolling by Strain Rate Vector

在线阅读下载全文

作  者:DENG Wei ZHAO De-wen QIN Xiao-mei GAO Xiu-hua DU Lin-xiu LIU Xiang-hua 

机构地区:[1]State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, Liaoning, China

出  处:《Journal of Iron and Steel Research International》2010年第3期28-33,共6页

基  金:Item Sponsored by National Natural Science Foundation of China (50474015)

摘  要:A new linear integral method for bar hot rolling on roughing train was obtained. First, for plastic deformation energy rate, equivalent strain rate about Kobayashi's three-dimensional velocity field was expressed by two-dimensional strain rate vector; then, the two-dimensional strain rate vector was inverted into inner product and was integrated term by term. During those processes, boundary equation and mean value theorem were introduced; for friction and shear energy dissipation rate, definite integral was applied to the solution process. Sequentially, the total upper bound power was minimized, and the analytical expressions of rolling torque, separating force, and stress state factor were obtained. The calculated results by these expressions were compared with those of experimental values. The results show that the new linear integral method is available for bar rough rolling analysis and the calculated results by this method are a little higher than those of experimental ones. However, the maximum error between them is less than 10%.A new linear integral method for bar hot rolling on roughing train was obtained. First, for plastic deformation energy rate, equivalent strain rate about Kobayashi's three-dimensional velocity field was expressed by two-dimensional strain rate vector; then, the two-dimensional strain rate vector was inverted into inner product and was integrated term by term. During those processes, boundary equation and mean value theorem were introduced; for friction and shear energy dissipation rate, definite integral was applied to the solution process. Sequentially, the total upper bound power was minimized, and the analytical expressions of rolling torque, separating force, and stress state factor were obtained. The calculated results by these expressions were compared with those of experimental values. The results show that the new linear integral method is available for bar rough rolling analysis and the calculated results by this method are a little higher than those of experimental ones. However, the maximum error between them is less than 10%.

关 键 词:bar rough rolling linear integration strain rate vector roll separating force 

分 类 号:TG146.21[一般工业技术—材料科学与工程] O316[金属学及工艺—金属材料]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象