角域AR谱技术在齿轮故障诊断中的应用  被引量:5

Application of angle domain-AR spectrum technology in gearbox fault diagnosis

在线阅读下载全文

作  者:刘小峰[1] 柏林[1] 

机构地区:[1]重庆大学机械传动国家重点实验室,重庆400044

出  处:《振动工程学报》2010年第1期113-118,共6页Journal of Vibration Engineering

基  金:国家高技术研究发展计划(863计划;2008AA042408);重庆市科委自然科学基金计划资助项目(CSTS;2009BB3194;2009BB0355)

摘  要:利用时频分布平面内信号能量峰脊与瞬时频率之间的对应关系,对信号瞬时频率进行估计;在此基础上利用代数方法求解鉴相时标积分方程,并对经插值重采样得到的角域信号进角域平均处理,提高了角域信号的信噪比;最后对角域信号进行AR建模实现信号的阶次谱分析。实际测试结果表明:采用角域AR谱技术处理齿轮箱非平稳振动信号,能够有效地避免传统频谱方法无法解决的"频率模糊"现象,克服了传统阶次谱分辨率较低,谱线毛糙,易受噪声及轴频调制影响等缺点,对齿轮箱的早期故障有较好的识别能力。Aiming at the difficult problem of processing the non-stationary vibration signals such as speed up or speed down signals, a novel method is proposed, which combines order tracking analysis and AR modeling to analyze the gearbox viberation signals at varying rotation speed. Firstly, adaptive optimum kernel time-frequency reprenstation is selected to describe the corresponding relation between the instantaneous frequency(IF) curve and the position information of energy ridge. Seeondly, the IF is estimated with the time frequency peak-detection. The pure algebraic method is used to solve phase discrimination label integral equation. By spline data interpolating and resampling, stationary signal in angluar domain is abtained. Thirdly, angle domain averge technique is applied to improve signal-noise ratio of angle domain signal. Finally, applying AR time series modeling into the angluar signal. And the AR order spectrum is gained with modeling parameters. The analyzed result of test data? show that the method can extract fault characteristic of gearbox viberation signal at varying speed. The proposed method overcomes the conventional order spectrum shortcomings of poor resolution, coarse spectra lines, and is sensitive to noises and axis frequecy modulation. It has good application foreground in engineering signal processing.

关 键 词:瞬时频率 角域信号 阶比跟踪 AR建模 故障诊断 

分 类 号:TP332.22[自动化与计算机技术—计算机系统结构] TH113.1[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象