FCP-投射模与某些环(英文)  被引量:1

FCP-projective modules and some rings

在线阅读下载全文

作  者:朱占敏[1] 陈建龙[2] 

机构地区:[1]嘉兴学院数学系,浙江嘉兴314001 [2]东南大学数学系,江苏南京210096

出  处:《浙江大学学报(理学版)》2010年第2期126-130,共5页Journal of Zhejiang University(Science Edition)

基  金:The NSFC of China (No.10971024)

摘  要:设R为一个环,如果对每一有限余相关右R-模A,Ext1R(M,A)=0,称一个右R-模M是FCP-投射的.如果有限余生成内射右R-模的有限余生成商模是有限余相关的,则R称为右余凝聚的.如果有限余生成内射右R-模的有限余生成商模是内射的,则R称为右余半遗传的.本文给出了FCP-投射模的一些特征,用FCP-投射模刻画了右V-环和右半遗传环,给出了右V-环为阿丁半单环的一些条件,研究了右余凝聚环上模的FCP-投射维数,还研究了FCP-投射模为投射模的环.Let R be a ring.A module MR is called FCP-projective if Ext1R(M,A)=0 for every finitely corelated right R-module A.A ring R is called right co-coherent if every finitely cogenerated factor module of a finitely cogenerated injective right R-module is finitely corelated.A ring R is called right co-semihereditary if every finitely cogenerated factor module of a finitely cogenerated injective right R-module is injective.Some characterizations of FCP-projective modules are given;right V-rings and right co-semihereditary rings are characteristics by FCP-projective right R modules.Some conditions under which right V-rings are artinian semisimple rings are given.FCP-projective dimensions of modules over right co-coherent rings are investigated.Rings over which every FCP-projective module is projective are studied.

关 键 词:FCP-投射模 V环 余半遗传环 余凝聚环 FCPP环 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象