检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:YOU LiXing SHEN XiaoFang YANG XiaoYan
出 处:《Chinese Science Bulletin》2010年第4期441-445,共5页
基 金:supported by the National Natural Science Foundation of China (Grant No. 60801046);National Basic re-search Pogram of China(Grant No.2009CB929602);Science and Technology Commission of Shanghai Municipality (Grant Nos. 08dz1400702 & 08PJ1411200)
摘 要:Single photon detection is one of the key technologies for quantum key distribution in quantum communication. As a novel single photon detection technology, superconducting nanowire single photon detector (SNSPD) surpasses conventional semiconducting single photon detectors with high count rate and low dark count rate. In this article, we introduce SNSPD fabricated from NbN ultrathin superconducting film and lab-based SNSPD system. The characteristics of single photon response pulse of SNSPD are analyzed in detail. Also discussed is the relationship between waveform of single photon response and system bandwidth. Circuit model is made to analyze the performance of SNSPD. The simulation result agrees well with the experimental data. Those results are valuable for understanding the mechanism of SNSPD and building future SNSPD system for quantum communication.Single photon detection is one of the key technologies for quantum key distribution in quantum communication. As a novel single photon detection technology, superconducting nanowire single photon detector (SNSPD) surpasses conventional semiconducting single photon detectors with high count rate and low dark count rate. In this article, we introduce SNSPD fabricated from NbN ultrathin superconducting film and lab-based SNSPD system. The characteristics of single photon response pulse of SNSPD are analyzed in detail. Also discussed is the relationship between waveform of single photon response and system bandwidth. Circuit model is made to analyze the performance of SNSPD. The simulation result agrees well with the experimental data. Those results are valuable for understanding the mechanism of SNSPD and building future SNSPD system for quantum communication.
关 键 词:单光子探测器 超导薄膜 纳米线 反应 量子通信 高计数率 PD系统 密钥分配
分 类 号:TN2[电子电信—物理电子学] TM26[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33