THE PROBABILITY HYPOTHESIS DENSITY FILTER WITH EVIDENCE FUSION  

THE PROBABILITY HYPOTHESIS DENSITY FILTER WITH EVIDENCE FUSION

在线阅读下载全文

作  者:Liu Weifeng Xu Xiaobin 

机构地区:[1]School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

出  处:《Journal of Electronics(China)》2009年第6期746-753,共8页电子科学学刊(英文版)

基  金:Supports in part by the NSFC (No. 60772006, 60874105);the ZJNSF(Y1080422, R106745);NCET (08- 0345)

摘  要:The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter which combines the Dempster-Shafer (DS) evidence theory. The proposed filter can deal with the uncertain information,thus it forms target track. We mainly discusses the E-PHD filter under the condition of linear Gaussian. Research shows that the E-PHD filter has an analytic form of Evidence Gaussian Mixture PHD (E-GMPHD). The final experiment shows that the proposed E-GMPHD filter can derive the target identity,state,and number effectively.The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper, we introduce a novel Evidence PHD (E-PHD) filter which combines the Dempster-Shafer (DS) evidence theory. The proposed filter can deal with the uncertain information, thus it forms target track. We mainly discusses the E-PHD filter under the condition of linear Gaussian. Research shows that the E-PHD filter has an analytic form of Evidence Gaussian Mixture PHD (E-GMPHD). The final experiment shows that the proposed E-GMPHD filter can derive the target identity, state, and number effectively.

关 键 词:Probability Hypotheses Density (PHD) Dempster-Shafer (DS) evidence Uncertain in-formation Evidence PHD (E-PHD) Evidence Gaussian Mixture PHD (E-GMPHD) 

分 类 号:TN713[电子电信—电路与系统] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象