Thermal relaxation of exchange bias field in an exchange coupled CoFe/IrMn bilayer  

Thermal relaxation of exchange bias field in an exchange coupled CoFe/IrMn bilayer

在线阅读下载全文

作  者:祁先进 王寅岗 周广宏 李子全 郭敏 

机构地区:[1]College of Materials Science and Technology,Nanjing University of Aeronautics and Astronautics

出  处:《Chinese Physics B》2010年第3期523-527,共5页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No. 50671048)

摘  要:This paper reports that a CoFe/IrMn bilayer was deposited by high vacuum magnetron sputtering on silicon wafer substrate; the thermal relaxation of the CoFe/IrMn bilayer is investigated by means of holding the film in a negative saturation field at various temperatures. The exchange bias decreases with increasing period of time while holding the film in a negative saturation field at a given temperature. Increasing the temperature accelerates the decrease of exchange field. The results can be explained by the quantitative model of the nucleation and growth of antiferromagnetic domains suggested by Xi H Wet al. [2007 Phys. Rev. B 75 014434], and it is believed that two energy barriers exist in the investigated temperature range.This paper reports that a CoFe/IrMn bilayer was deposited by high vacuum magnetron sputtering on silicon wafer substrate; the thermal relaxation of the CoFe/IrMn bilayer is investigated by means of holding the film in a negative saturation field at various temperatures. The exchange bias decreases with increasing period of time while holding the film in a negative saturation field at a given temperature. Increasing the temperature accelerates the decrease of exchange field. The results can be explained by the quantitative model of the nucleation and growth of antiferromagnetic domains suggested by Xi H Wet al. [2007 Phys. Rev. B 75 014434], and it is believed that two energy barriers exist in the investigated temperature range.

关 键 词:thermal relaxation exchange bias energy barrier CoFe/IrMn bilayer 

分 类 号:O482.5[理学—固体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象