检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓森[1] 杨军锋[1] 郭明威[1] 韩梦涛[1]
出 处:《润滑与密封》2010年第3期90-95,共6页Lubrication Engineering
摘 要:利用虚拟仪器技术实现基于模糊支持向量机的航空发动机润滑系统故障诊断。通过对润滑油油液中磨损元素进行光谱识别与分析,提取故障诊断所需的特征参数作为支持向量机的学习样本,使用ActiveX技术在LabVIEW中调用MATLAB.m文件,完成对润滑系统的故障诊断,并比较了基于BP神经网络的诊断方法与模糊SVM故障诊断方法的诊断结果。结果表明:模糊SVM方法在故障诊断速度和诊断准确性方面都具有明显优势,其平均故障识别率达到95%以上。Based on virtual instrument and fuzzy SVM,a fault-diagnosis system was set up for aviation-engine lubrication system.According to spectrum analysis and recognition of wear elements in lubrication oil,the char-acteristic vectors were extracted as the input signal of fuzzy SVM.Using the MATLAB script in LabVIEW based on the technology of Active,the fault diagnosis of the aviation-engine lubrication system was realized.The result of fault diagnosis of BP neural-network was compared with that of fuzzy SVM.The results show that fuzzy SVM method has a transparent superior in fault diagnosis with high speed and accuracy,the average rate of fault recognition can reach 95%.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145