一种基于区域访问概率的容迟网络路由算法  被引量:1

Routing Algorithm Based on the Probability of Visiting Area Cells in Delay Tolerant Network

在线阅读下载全文

作  者:杨振奇[1,2] 肖明军[1,2] 黄刘生[1,2] 徐宏力[1,2] 

机构地区:[1]中国科学技术大学计算机科学与技术系,安徽合肥230027 [2]中国科学技术大学苏州研究院,江苏苏州215123

出  处:《小型微型计算机系统》2010年第3期480-484,共5页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(60803009)资助;博士学科点专项科研基金项目(20070358075)资助

摘  要:延迟容忍网络泛指没有稳定端到端传输路径的无线网络,广泛应用于太空网络、乡村网络、移动传感网络、Ad hoc网络等等,具有重要的研究意义.其路由问题极具挑战性,是当前的一个研究热点.本文针对基于区域单元(Cell)移动模型的延迟容忍网络,提出一个基于区域访问概率的路由算法——PROAREA算法.已有的算法主要通过节点间的相遇概率来指导路由决策,而PROAREA算法则通过各节点访问区域单元的概率估算出了节点间数据传输的期望延迟,从而能够直接使用期望延迟来指导路由决策,具有更好的效果.实验结果表明,与延迟容忍网络中的Epidemic算法和PROHET算法相比,PROAREA算法的传输成功率平均提高了15%和6.95%,而平均传输延迟平均降低了46.7%和40.2%.Delay tolerant network generally refers to the wireless network that has not stable end-to-end delivery paths.It is a significantly important research area and widely applied in outer space communication networks,village networks,mobile wireless sensor networks,and Ad hoc networks,etc.The routing problem in such networks is very challenging and has become into a hot research issue by now.The paper focuses on the delay tolerant networks under the area-cell-based mobility model,and proposes a routing algorithm——the PROAREA algorithm.The previous algorithms make the routing decision based on the probability of meeting between nodes.The PROAREA algorithm however has derived out the expected delivery delay between nodes from their visiting probabilities,and then directly use the expected delivery delay to guide the routing decision.Such routing decision has much better performance.The experiment results show that compared with the Epidemic algorithm and the PROHET algorithm,the successful delivery rate of the PROAREA algorithm increases 15% and 6.95%,the average delivery delay reduces 46.7% and 40.2%,respectively.

关 键 词:DTN 路由算法 概率 区域单元 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象