大用户直购中基于Q学习算法的多代理两阶段谈判策略  被引量:11

A Two-stage Negotiation Strategy Based on Multi-agent Using Q-learning in Direct Power Purchase with Large Consumers

在线阅读下载全文

作  者:张森林[1] 屈少青[1] 陈皓勇[1] 张浩 荆朝霞[1] 匡卫洪[1] 

机构地区:[1]华南理工大学电力学院,广东省广州市510640 [2]西北电网电力交易中心,陕西省西安市710000

出  处:《电力系统自动化》2010年第6期37-41,共5页Automation of Electric Power Systems

基  金:教育部新世纪优秀人才支持计划资助项目(NCET-08-0207);教育部科学技术研究重点资助项目(109128);国家社会科学基金资助项目(04CJL012)~~

摘  要:利用多代理对大用户直购电中不同类型交易者的谈判行为进行了模拟,采取基于历史报价数据的Q学习算法增加了代理的自主学习能力,使代理能根据对手动作及时调整己方报价。此外,为保证市场竞争的公平性,提出了基于"谈判+拍卖"的两阶段谈判机制,给予因对谈判形势估计不足致使谈判破裂但又拥有成本优势的发电商再一次出价的机会,使得合同电价反映出不同发电成本间的真实差异,以此激励发电商以降低成本的方式来换取谈判中的主动权。The negotiation actions of different traders in the negotiation process of direct power purchase with large consumers are simulated using the multi-agent technology. With the Q-learning algorithm based on historical data, an agent can strengthen its own learning capacity and timely adjust its bid price against its opponent' s action. Meanwhile, in order to ensure the fairness of market competition, a two-stage negotiation mechanism of 'negotiations+auction' is proposed. It gives one more opportunity to the generator agent who has a lower reserve price but fails to achieve an agreement, due to underestimation of the situation in the negotiations. It also makes the real diversity of different generating costs reflected by contract power price, and can inspire the generators to get the negotiating initiative by lowering their costs.

关 键 词:一对多谈判 Q学习算法 电力市场 大用户直购电 双边合同 

分 类 号:F426.61[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象