Electronic transport through a periodic array of quantum-dot rings  

Electronic transport through a periodic array of quantum-dot rings

在线阅读下载全文

作  者:薛海斌 张瀚尹 聂一行 李志坚 梁九卿 

机构地区:[1]Institute of Theoretical Physics and Department of Physics,Shanxi University [2]Institute of Solid State Physics,Shanxi Datong University

出  处:《Chinese Physics B》2010年第4期381-387,共7页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant Nos. 10774094 and 10775091);National Fundamental Fund of Personnel Training (Grant No. J0730317);Natural Science Foundation of Shanxi Province of China (GrantNo. 2009011001-1)

摘  要:Using the tight-binding approximation and the transfer matrix method, this paper studies the electronic transport properties through a periodic array of quantum-dot (QD) rings threaded by a magnetic flux. It demonstrates that the even^odd parity of the QD number in a single ring and the number of the QD rings in the array play a crucial role in the electron transmission. For a single QD ring, the resonance and antiresonance transmission depend not only on the applied magnetic flux but also on the difference between the number of QDs on the two arms of the ring. For an array of QD rings, the transmission properties are related not only to the even-odd parity of the number No of QDs in the single ring but also to the even-odd parity of the ring number N in the array. When the incident electron energy is aligned with the site energy, for the array of N rings with No = odd the antiresonance transmission cannot occur but the resonance transmission may occur and the transmission spectrum has N resonance peaks (N - 1 resonance peaks) in a period for N = odd (for N = even). For the array of N rings with No = even the transmission properties depend on the flux threading the ring and the QD number on one arm of the ring. These results may be helpful in designing QD devices.Using the tight-binding approximation and the transfer matrix method, this paper studies the electronic transport properties through a periodic array of quantum-dot (QD) rings threaded by a magnetic flux. It demonstrates that the even^odd parity of the QD number in a single ring and the number of the QD rings in the array play a crucial role in the electron transmission. For a single QD ring, the resonance and antiresonance transmission depend not only on the applied magnetic flux but also on the difference between the number of QDs on the two arms of the ring. For an array of QD rings, the transmission properties are related not only to the even-odd parity of the number No of QDs in the single ring but also to the even-odd parity of the ring number N in the array. When the incident electron energy is aligned with the site energy, for the array of N rings with No = odd the antiresonance transmission cannot occur but the resonance transmission may occur and the transmission spectrum has N resonance peaks (N - 1 resonance peaks) in a period for N = odd (for N = even). For the array of N rings with No = even the transmission properties depend on the flux threading the ring and the QD number on one arm of the ring. These results may be helpful in designing QD devices.

关 键 词:quantum dots electronic transport antiresonance transmission resonance transmission 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象