检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:DU YuSong PEI DingYi
机构地区:[1]School of Mathematics and Information Sciences,Guangzhou University,Guangzhou 510006,China
出 处:《Science China(Information Sciences)》2010年第4期780-787,共8页中国科学(信息科学)(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant No. 90604034)
摘 要:Boolean functions used in stream ciphers against algebraic attacks are required to have a necessary cryptographic property-high algebraic immunity (AI). In this paper, Boolean functions of even variables with the maximum AI are investigated. The number of independent annihilators at the lowest degree of Boolean functions of even variables with the maximum AI is determined. It is shown that when n is even, one can get an (n + 1)-variable Boolean function with the maximum AI from two n-variable Boolean functions with the maximum AI only if the Hamming weights of the two functions satisfy the given conditions. The nonlinearity of the Boolean functions obtained in this way is computed. Similarly, one can get an (n + 2)-variable Boolean function with the maximum AI from four n-variable Boolean functions with the maximum AI. The nonlinearity of a class of Boolean functions with the maximum AI is determined such that their Hamming weights are either the maximum or the minimum.Boolean functions used in stream ciphers against algebraic attacks are required to have a necessary cryptographic property-high algebraic immunity (AI). In this paper, Boolean functions of even variables with the maximum AI are investigated. The number of independent annihilators at the lowest degree of Boolean functions of even variables with the maximum AI is determined. It is shown that when n is even, one can get an (n + 1)-variable Boolean function with the maximum AI from two n-variable Boolean functions with the maximum AI only if the Hamming weights of the two functions satisfy the given conditions. The nonlinearity of the Boolean functions obtained in this way is computed. Similarly, one can get an (n + 2)-variable Boolean function with the maximum AI from four n-variable Boolean functions with the maximum AI. The nonlinearity of a class of Boolean functions with the maximum AI is determined such that their Hamming weights are either the maximum or the minimum.
关 键 词:Boolean function algebraic attack algebraic immunity ANNIHILATOR NONLINEARITY
分 类 号:TN918.1[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.206.193