Suboptimal MMSE Channel Estimation with Subspace Tracking for MIMO-OFDM Transmission  

Suboptimal MMSE Channel Estimation with Subspace Tracking for MIMO-OFDM Transmission

在线阅读下载全文

作  者:张静 罗汉文 金荣洪 

机构地区:[1]Department of Electronic Engineering,Shanghai Jiaotong University [2]Department of Communication Engineering,Shanghai Normal University

出  处:《Journal of Donghua University(English Edition)》2010年第1期14-18,共5页东华大学学报(英文版)

基  金:National Natural Science Foundation of China (No.60572157);International Cooperation Foundation of Shanghai Jiaotong University,China (No.2008DFA11950)

摘  要:A suboptimal minimum mean-squared error estimation (MMSE) is proposed for a dispersive wireless channel in the absence of its .orrelation matrix for multipleinput multiple-output ort,ogonal frequency division multiplexing (MIMO - OFDM) transmission. It utilizes a fast subspace approximation tracking to separate signal subspace with a limited set of channel estimates. The subspace rank is adjusted by pre-set thresholds in different signal-to-noise ratios (SNRs). The performance comparison among the proposed algorithm, least square based, and the optimal MMSE estimation is shown by numerical simulation under a spatially correlated multi-tap channel scenario. It demonstrates that the approach has better normalized mean square error than recursive least square estimation and yields 3 dB gain over the latter.A suboptimal minimum mean-squared error estimation (MMSE) is proposed for a dispersive wireless channel in the absence of its correlation matrix for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) transmission.It utilizes a fast subspace approximation tracking to separate signal subspace with a limited set of channel estimates.The subspace rank is adjusted by pre-set thresholds in different signal-to-noise ratios (SNRs).The performance comparison among the proposed algorithm,least square based,and the optimal MMSE estimation is shown by numerical simulation under a spatially correlated multi-tap channel scenario.It demonstrates that the approach has better normalized mean square error than recursive least square estimation and yields 3 dB gain over the latter.

关 键 词:multiple-input multiple-output  MIMO  orthogonal frequency division multiplexing (OFDM) channel estimation adaotive estimation spatial-correlation 

分 类 号:TN914[电子电信—通信与信息系统] TP183[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象