检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李洪兵[1,2] 余成波[1] 陈强[2] 冉涌[3]
机构地区:[1]重庆理工大学远程测试与控制技术研究所,重庆400050 [2]重庆三峡学院,重庆404000 [3]电子科技大学,成都610054
出 处:《电讯技术》2010年第4期96-101,共6页Telecommunication Engineering
基 金:重庆市自然科学基金重点资助项目(CSTC2007BA2023)~~
摘 要:为提高路径搜索效率,避免动态分簇较多的能量消耗,提出了基于最优-最差蚂蚁系统(BWAS)的无线传感器网络静态分簇路由算法。BWAS是对蚁群算法的改进,在路径搜寻过程中评价出最优最差蚂蚁,引入奖惩机制,加快了路径搜索速度。通过无线传感器网络静态分簇、簇内动态选举簇头,在簇头节点间运用BWAS算法搜寻从簇头节点到汇聚节点的多跳最优路径,能减少路径寻优能量消耗,实现均衡能量管理,延长网络寿命,且具有较强的鲁棒性。通过与基于BWAS的动态分簇和基于蚁群算法的动态分簇路由的仿真实验相比较,证实了本算法的有效性。In order to improve the efficiency of path searching and avoid the more energy consumption in dynamic clustering style, a new BWAS (best - worst ant system) - based static clustering routing algorithm for wireless sensor networks(WSNs) is presented in this paper. The BWAS algorithm improves the ant colony algorithm by evaluating the best and worst ants during the path searching process. As a result it has speeded up the path searching due to introducing the reward - punishment mechanism to guide the search. Through the static clustering in the beginning and later dynamic electing cluster heads in each cluster in WSNs, using BWAS- based method to find the optimal multi - hop path from clusterhead nodes to sink node, the energy consumption can be reduced and balanced. It also can extend the service life and has strong robustness. Comparison with the dynamic clustering style and ant colony - based style confirms the effectiveness of the algorithm.
关 键 词:无线传感器网络 路由协议 BWAS算法 静态分簇
分 类 号:TN393[电子电信—物理电子学] TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15