Compounded Surface Modification of ZK60 Mg Alloy by High Current Pulsed Electron Beam+Micro-plasma Oxidation  被引量:3

Compounded Surface Modification of ZK60 Mg Alloy by High Current Pulsed Electron Beam+Micro-plasma Oxidation

在线阅读下载全文

作  者:高波 郝仪 涂赣峰 石为喜 于福晓 李世伟 

机构地区:[1]School of Materials and Metallurgy, Northeastern University

出  处:《Plasma Science and Technology》2010年第1期67-70,共4页等离子体科学和技术(英文版)

基  金:supported by Liaoning BaiQianWan Talents Program of China (No. 2008921028);Doctoral Fund of Ministry of Education of China (No. 200801451082)

摘  要:In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.

关 键 词:ZK60 Mg alloy high current pulsed electron beam micro-plasma oxidation compounded surface modification corrosion resistance 

分 类 号:TG174.4[金属学及工艺—金属表面处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象