检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冀国良[1,2] 李付国[1] 李庆华[1] 李惠曲[3] 李志[3]
机构地区:[1]西北工业大学材料科学与工程学院,陕西西安710072 [2]河南理工大学材料学院,河南焦作454000 [3]北京航空材料研究院,北京100095
出 处:《材料热处理学报》2010年第3期83-88,共6页Transactions of Materials and Heat Treatment
基 金:航空基础科学基金项目(03H53048)
摘 要:在变形温度800~1200℃和应变速率0.01~50s-1下,利用Gleeble-3800热模拟试验机对Aermet100钢的高温变形本构关系与微观组织演变进行了研究。结果表明,增加应变速率和降低变形温度都能提高材料的流动应力,延迟动态再结晶发生,使变形材料表现出加工硬化和动态回复。运用位错理论研究了微观组织和流动应力曲线的变化规律并做出了合理的解释。在压缩实验的变形条件下变形激活能为489.10kJ/mol。确定了峰值应力、变形温度和应变速率之间的双曲正弦模型的本构关系。High-temperature deformation constitutive relationship and microstructure evolution in Aermet100 steel were investigated with compression tests at deformation temperatures of 800~1200 ℃ and strain rates of 0.01~50 s^-1 on a Gleeble-3800 thermo-mechanical simulator. Results show that increasing strain rate and decreasing deformation temperature can make the flow stress increase, hamper the occurrence of dynamic recrystallization, and promote the occurrence of work hardening and dynamic recovery in deformation metals. The change law of microstructure and stress-strain curves was investigated using dislocation theory, and reasonable explanation of it was made. The deformation activation energy of Aermet100 steel under the deformation conditions of the compression tests was determined as Q=489.10 kJ/mol. The constitutive relationship between peak stress, strain rate and deformation temperature was established by means of the conventional sinh model.
关 键 词:AERMET100钢 本构关系 微观组织 变形激活能
分 类 号:TG146.1[一般工业技术—材料科学与工程] TG113.2[金属学及工艺—金属材料]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.8