机构地区:[1]State Key Laboratory o/Water Resources and Hydropower Engineering Science,Wuhan University, Wuhan 430072 [2]Department of Geosciences, University of Oslo, PO Box 1047 Blindern, NO-0316 Oslo, Nomvay [3]Radar and Avionics Institute of Aviation Industry Corporation of China, Wuxi 214063
出 处:《Advances in Atmospheric Sciences》2010年第2期274-284,共11页大气科学进展(英文版)
基 金:supported financially by the National Natural Science Foundation of China (Grant Nos.50679063 and 50809049);the International CooperationResearch Fund of China (2005DFA20520);the Re-search Fund for the Doctoral Program of Higher Education(200804861062)
摘 要:General circulation models (GCMs) are often used in assessing the impact of climate change at global and continental scales. However, the climatic factors simulated by GCMs are inconsistent at comparatively smaller scales, such as individual river basins. In this study, a statistical downscaling approach based on the Smooth Support Vector Machine (SSVM) method was constructed to predict daily precipitation of the changed climate in the Hanjiang Basin. NCEP/NCAR reanalysis data were used to establish the statistical relationship between the larger scale climate predictors and observed precipitation. The relationship obtained was used to project future precipitation from two GCMs (CGCM2 and HadCM3) for the A2 emission scenario. The results obtained using SSVM were compared with those from an artificial neural network (ANN). The comparisons showed that SSVM is suitable for conducting climate impact studies as a statistical downscaling tool in this region. The temporal trends projected by SSVM based on the A2 emission scenario for CGCM2 and HadCM3 were for rainfall to decrease during the period 2011–2040 in the upper basin and to increase after 2071 in the whole of Hanjiang Basin.General circulation models (GCMs) are often used in assessing the impact of climate change at global and continental scales. However, the climatic factors simulated by GCMs are inconsistent at comparatively smaller scales, such as individual river basins. In this study, a statistical downscaling approach based on the Smooth Support Vector Machine (SSVM) method was constructed to predict daily precipitation of the changed climate in the Hanjiang Basin. NCEP/NCAR reanalysis data were used to establish the statistical relationship between the larger scale climate predictors and observed precipitation. The relationship obtained was used to project future precipitation from two GCMs (CGCM2 and HadCM3) for the A2 emission scenario. The results obtained using SSVM were compared with those from an artificial neural network (ANN). The comparisons showed that SSVM is suitable for conducting climate impact studies as a statistical downscaling tool in this region. The temporal trends projected by SSVM based on the A2 emission scenario for CGCM2 and HadCM3 were for rainfall to decrease during the period 2011–2040 in the upper basin and to increase after 2071 in the whole of Hanjiang Basin.
关 键 词:SSVM GCM statistical downscaling precipitation Hanjiang Basin
分 类 号:P448[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...