机构地区:[1]School of Atmospheric Sciences, Nanjing University [2]RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences
出 处:《Advances in Atmospheric Sciences》2010年第2期403-420,共18页大气科学进展(英文版)
基 金:supported jointly by the "National Key Developing Programme for Basic Science" project 2006CB400500;China Postdoctoral Science Foundation 20070410133;National Natural Science Foundation of China General Program 40905042, and 40675042
摘 要:A number of AGCM simulations were performed by including various land–sea distributions (LSDs), such as meridional LSDs, zonal LSDs, tropical large-scale LSDs, and subcontinental-scale LSDs, to identify their effects on the Asian monsoon. In seven meridional LSD experiments with the continent/ocean located to the north/south of a certain latitude, the LSDs remain identical except the southern coastline is varied from 40 ° to 4 ° N in intervals of 5.6° . In the experiments with the coastline located to the north of 21° N, no monsoon can be found in the subtropical zone. In contrast, a summer monsoon is simulated when the continent extends to the south of 21 ° N. Meanwhile, the earlier onset and stronger intensity of the tropical summer monsoon are simulated with the southward extension of the tropical continent. The effects of zonal LSDs were investigated by including the Pacific and Atlantic Ocean into the model based on the meridional LSD run with the coastline located at 21 °N. The results indicate that the presence of a mid-latitude zonal LSD induces a strong zonal pressure gradient between the continent and ocean, which in turn results in the formation of an East Asian subtropical monsoon. The comparison of simulations with and without the Indian Peninsula and Indo-China Peninsula reveals that the presence of two peninsulas remarkably strengthens the southwesterly winds over South Asia due to the tropical asymmetric heating between the tropical land and sea. The tropical zonal LSD plays a crucial role in the formation of cumulus convection.A number of AGCM simulations were performed by including various land–sea distributions (LSDs), such as meridional LSDs, zonal LSDs, tropical large-scale LSDs, and subcontinental-scale LSDs, to identify their effects on the Asian monsoon. In seven meridional LSD experiments with the continent/ocean located to the north/south of a certain latitude, the LSDs remain identical except the southern coastline is varied from 40 ° to 4 ° N in intervals of 5.6° . In the experiments with the coastline located to the north of 21° N, no monsoon can be found in the subtropical zone. In contrast, a summer monsoon is simulated when the continent extends to the south of 21 ° N. Meanwhile, the earlier onset and stronger intensity of the tropical summer monsoon are simulated with the southward extension of the tropical continent. The effects of zonal LSDs were investigated by including the Pacific and Atlantic Ocean into the model based on the meridional LSD run with the coastline located at 21 °N. The results indicate that the presence of a mid-latitude zonal LSD induces a strong zonal pressure gradient between the continent and ocean, which in turn results in the formation of an East Asian subtropical monsoon. The comparison of simulations with and without the Indian Peninsula and Indo-China Peninsula reveals that the presence of two peninsulas remarkably strengthens the southwesterly winds over South Asia due to the tropical asymmetric heating between the tropical land and sea. The tropical zonal LSD plays a crucial role in the formation of cumulus convection.
关 键 词:land–sea distribution Asian monsoon rainfall circulation seasonal transition
分 类 号:P461.2[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...