基于整数二部拆分的最优联盟结构求解  被引量:1

Optimal Coalition Structure Solving Based on the Bipartite of Integer

在线阅读下载全文

作  者:刘惊雷[1] 张振荣[1] 张伟[1] 

机构地区:[1]烟台大学计算机学院,山东烟台264005

出  处:《计算机工程与科学》2010年第5期64-66,73,共4页Computer Engineering & Science

基  金:国家自然科学基金资助项目(60496323);山东省教育厅科技计划资助项目(J07JYJ24)

摘  要:联盟结构是对Agent集合的一个划分,通过联盟形成联盟结构,可以使Agent之间形成有效合作,完成单个Agent所不能完成的任务。本文提出了BIDP来求最优联盟结构,该算法利用整数二部拆分来生成二部划分,并利用二部拆分的界来对搜索空间进行限界。随后把该算法与DP算法做了理论和实验分析,理论上得出BIDP所需要的空间比DP减少33.3%。实验表明,当联盟值满足均匀分布和正态分布,BIDP在21个Agent的情况下,搜索空间比DP减少35%和92%。最后对求最优联盟结构的确定式算法作了总结,即时间复杂度的上界是O(3n),下界是Ω(2n),空间复杂度是Θ(2n)。Coalition structure is a partition of the agent set, forming a coalition structure by coalition can make agents cooperate effectively and fulfill the tasks that a single agent can not. In this paper, we propose a BIDP (Bipartite of Integer Dynamic Programming) algorithm to solve the optimal coalition structure generation, which adopts the bipartite of integer to generate bipartite partitions, and takes the bound of integer bipartite as the bound of the search space. And a theoretical analysis proves that BIDP can save 33.3% memory in any case than DP (Dynamic Programming). An experiment analysis shows that BIDP can save 35% and 920//00 searching numbers on 21 agents when the coalition values meet the uniform distri- bution and normal distribution. Finally, the paper gives a verdict that the time complexity of the determinant algorithm to solve OCS is between Ω(2n ) and O(3n ), and the space complexity is θ(2n ).

关 键 词:最优联盟结构 BIDP算法 整数二部拆分 二部划分 时间和空间复杂度 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象