人脸非线性视角流形建模方法  

Nonlinear View Manifold Modeling Methods for Multi-View Faces

在线阅读下载全文

作  者:田春娜[1] 李洁[1] 高新波[1] 

机构地区:[1]西安电子科技大学电子工程学院影像处理系统实验室,西安710071

出  处:《北京交通大学学报》2010年第2期62-66,共5页JOURNAL OF BEIJING JIAOTONG UNIVERSITY

基  金:国家自然科学基金资助项目(60771068;60702061;60832005);教育部博士点基金项目资助(20090203120011)

摘  要:针对线性子空间不足以描述头部视角空间非线性变化等因素影响人脸视角流形的精确建模问题,提出一种新的视角流形建模方法,并从理论上将该方法与经典的流形学习建模方法及概念驱动的视角流形建模方法进行比较,通过基于非线性张量分解的人脸及视角识别实验比较视角流形对识别结果的影响,从而给出视角流形的有效性比较.实验结果表明,本文提出的视角流形建模方法比概念驱动的视角流形和TensorFace中的线性视角系数均有更好的识别效果.Aiming at the issue of linear subspace analysis algorithms being incapable of representing nonlinearity changes in multi-view face images,a novel view manifold modeling method is proposed,which is independent with the identity information.A theoretical comparison among the proposed view manifold,the manifold learning generated one and the concept-driven ones is presented.To verify the validity of the proposed method,the experiments on nonlinear tensor decomposition based identity and view recognition are also given,which show the proposed view manifold achieves better results over the concept driven manifold the linear view coefficients in TensorFace.

关 键 词:视角流形 子空间分析 张量分解 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象