一种基于预测和变换混合设计的超光谱图像压缩方法  被引量:2

A Hyperspectral Image Compression Method Based on Hybrid Predictive Coding and Transform Coding

在线阅读下载全文

作  者:陈雷[1] 张晓林[1] 杨维松[1] 雷志东[1] 

机构地区:[1]北京航空航天大学电子信息工程学院,北京100191

出  处:《航空学报》2010年第4期754-761,共8页Acta Aeronautica et Astronautica Sinica

基  金:"十一五"装备预研项目(513060501);军事电子预研电子支撑技术项目(41501010510);国家自然科学基金(60702012);北京市重点学科资助项目

摘  要:提出了一种新的超光谱图像压缩方法。该方法针对三维小波压缩编码方法对专有数据的特殊属性利用效率较低的缺陷,设计了一种应用于超光谱图像的预测编码和变换编码相混合的实现方案。首先,由超光谱图像的高谱间相关性,推导出图像各波段间的一般表达式。然后,根据这一表达式建立了超光谱图像的波段预测方式。该预测方式以波段为单位,参考波段采用小波变换编码技术进行压缩。为了提高预测的精度,参考波段选择器和波段预测器分别基于超光谱图像的数学统计规律和各波段直方图形状相似的特性进行设计。最后,将预测偏差值通过三维小波编码技术进行压缩。实验结果表明,本文设计的方法与目前先进的超光谱压缩技术相比能够提供具有竞争力的性能提升,且具有良好的兼容性、灵活性和渐进传输能力。In this article a new hyperspectral image compression method is proposed. Since the three-dimensional wavelet transform compression cannot efficiently utilize the properties of a certain class of images,a hybrid predictive coding and transform coding scheme for hyperspectral images is designed. First,a general expression is derived from the high spectral correlation of hyperspectral images. Then,a new band prediction mode is built in accordance with the expression. Based on the mode all the spectral bands of a hyperspectral image can be reconstructed from a reference band compressed by wavelet transform coding. To improve the precision of prediction,the selector of the reference band and the predictor are established according to the statistical regularity of hyperspectral images and the property of similarity that exists among the shapes of histograms of most bands in the image. Finally,deviation data of the band prediction are compressed by three-dimensional wavelet transform coding. Results indicate that the proposed method can provide competitive performance in comparison with the state-of-the-art technique and it possesses such advantages as good scalability,high flexibility and good progressive transmitting capability.

关 键 词:超光谱图像 有损压缩 预测编码 变换编码 小波变换 

分 类 号:V443.5[航空宇航科学与技术—飞行器设计] TN919[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象