Numerical study of resting-state fMRI based on kernel ICA  

基于核独立成分分析的静息态fMRI数据研究(英文)

在线阅读下载全文

作  者:朱冬娟[1] 王训恒[1] 阮宗才[1] 

机构地区:[1]东南大学学习科学研究中心,南京210096

出  处:《Journal of Southeast University(English Edition)》2010年第1期78-81,共4页东南大学学报(英文版)

基  金:Key Academic Discipline during the11th Five-Year Plan Period of Jiangsu Province

摘  要:In order to facilitate the extraction of the default mode network(DMN), reduce the data complexity of the functional magnetic resonance imaging (fMRI)and overcome the restriction of the linearity of the mixing process encountered with the independent component analysis(ICA), a framework of dimensionality reduction and nonlinear transformation is proposed. First, the principal component analysis(PCA)is applied to reduce the time dimension 153 594×128 of the fMRI data to 153 594×5 for simplifying complexity computation and obtaining 95% of the information. Secondly, a new kernel-based nonlinear ICA method referred as the kernel ICA(KICA)based on the Gaussian kernel is introduced to analyze the resting-state fMRI data and extract the DMN. Experimental results show that the KICA provides a better performance for the resting-state fMRI data analysis compared with the classical ICA. Furthermore, the DMN is accurately extracted and the noise is reduced.为了方便提取静息态默认网络,降低功能核磁共振(fMRI)数据复杂度,克服独立成分分析只适合于源信号线性混合的限制,提出了特征降维和非线性变换的框架.首先采用主成分分析对fMRI信号的时间维度进行降维,将原始维度为153 594×128的fMRI数据降至153 594×5,以达到降低计算复杂度的目的,并保留95%的信息成分.然后利用基于高斯核的非线性独立成分分析即核独立成分分析来分析静息态fMRI数据并提取默认网络.实验结果表明,在分析静息态fMRI数据的过程中,核独立成分分析不仅能准确提取默认网络,而且降低了噪声,所得到的结果优于普通独立成分分析.

关 键 词:kernel independent component analysis principal component analysis functional magnetic resonance imaging(fMRI) RESTING-STATE 

分 类 号:R318.04[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象