Aerosol Optical Properties Affected by a Strong Dust Storm over Central and Northern China  被引量:11

Aerosol Optical Properties Affected by a Strong Dust Storm over Central and Northern China

在线阅读下载全文

作  者:辛金元 杜吴鹏 王跃思 高庆先 王明星 

机构地区:[1]State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences [2]Beijing Climate Center,Beijing Meteorological Bureau [3]Chinese Research Academy of Environment Science

出  处:《Advances in Atmospheric Sciences》2010年第3期562-574,共13页大气科学进展(英文版)

基  金:supported by the National Basic Research Program(No.2007CB407303);National Natural Science Foundation of China(No.40675073);the 863 Program (No.2006AA06A303)

摘  要:Aerosol observational data at 8 ground-based observation sites in the Chinese Sun Hazemeter Network (CSHNET) were analyzed to characterize the optical properties of aerosol particles during the strong dust storm of 16-21 April 2005. The observational aerosol optical depth (AOD) increased significantly during this dust storm at sites in Beijing city (86%), Beijing forest (84%), Xianghe (13%), Shapotou (27%), Shenyang (47%), Shanghai (23%), and Jiaozhou Bay (24%). The API (air pollution index) in Beijing and Tianjin also had a similar rise during the dust storm, while the Angstrhm exponent (a) declined evidently at sites in Beijing city (21%), Beijing forest (39%), Xianghe (19%), Ordos (77%), Shapotou (50%), Shanghai (12%), and Jiaozhou Bay (21%), respectively. Furthermore, The observational AOD and a demonstrated contrary trends during M1 storm stages (pre-dust storm, dust storm, and post-dust storm), with the AOD indicating an obvious "Valley Peak-Valley" pattern of variation, while a demonstrated a "Peak-Valley- Peak" pattern. In addition, the dust module in a regional climate model (RegCM3) simulated the dust storm occurrence and track accurately and RegCM3 was able to basically simulate the trends in AOD. The simulation results for the North China stations were the best, and the simulation for dust-source stations was on the high side, while the simulation was on the low side for coastal sites.Aerosol observational data at 8 ground-based observation sites in the Chinese Sun Hazemeter Network (CSHNET) were analyzed to characterize the optical properties of aerosol particles during the strong dust storm of 16-21 April 2005. The observational aerosol optical depth (AOD) increased significantly during this dust storm at sites in Beijing city (86%), Beijing forest (84%), Xianghe (13%), Shapotou (27%), Shenyang (47%), Shanghai (23%), and Jiaozhou Bay (24%). The API (air pollution index) in Beijing and Tianjin also had a similar rise during the dust storm, while the Angstrhm exponent (a) declined evidently at sites in Beijing city (21%), Beijing forest (39%), Xianghe (19%), Ordos (77%), Shapotou (50%), Shanghai (12%), and Jiaozhou Bay (21%), respectively. Furthermore, The observational AOD and a demonstrated contrary trends during M1 storm stages (pre-dust storm, dust storm, and post-dust storm), with the AOD indicating an obvious "Valley Peak-Valley" pattern of variation, while a demonstrated a "Peak-Valley- Peak" pattern. In addition, the dust module in a regional climate model (RegCM3) simulated the dust storm occurrence and track accurately and RegCM3 was able to basically simulate the trends in AOD. The simulation results for the North China stations were the best, and the simulation for dust-source stations was on the high side, while the simulation was on the low side for coastal sites.

关 键 词:optical properties dust storm REGCM3 aerosol optical depth (AOD) AngstrSm exponent (a) 

分 类 号:P445.4[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象