Analysis and improvement of sound radiation performance of spherical cap radiator  

Analysis and improvement of sound radiation performance of spherical cap radiator

在线阅读下载全文

作  者:唐义政 吴昭军 汤立国 

机构地区:[1]Hangzhou Institute of Applied Acoustics [2]Department of Oceanography,Xiamen University [3]Key Laboratory of Underwater Acoustic Communication and Marine Information Technology,Ministry of Education,Xiamen University

出  处:《Chinese Physics B》2010年第5期384-392,共9页中国物理B(英文版)

基  金:Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA09Z109);the Natural Science Foundation of Fujian Province,China (Grant No. T0750014)

摘  要:A spherical cap radiator is one of the important parts of an underwater wide-beam imaging system. The back radiation of a traditional spherical cap radiator, which is composed of a vibrating cap and a rigid baffle, is strong and its far-field directivity function may fluctuate in big amplitude in the vicinity of the polar axis. These shortcomings complicate the processing of the reflective waves received for imaging the targets. In this study, the back radiation is weakened by adding an acoustic soft material belt between the vibrating cap and the rigid baffle. And the fluctuation mentioned above is lowered remarkably by dividing the spherical cap radiator into many annuluses and a relatively smaller spherical cap, and by controlling the phase retardations of all elements appropriately. Furthermore, the numerical experiments are carried out by the finite element method (FEM) to prove the validity of the above methods.A spherical cap radiator is one of the important parts of an underwater wide-beam imaging system. The back radiation of a traditional spherical cap radiator, which is composed of a vibrating cap and a rigid baffle, is strong and its far-field directivity function may fluctuate in big amplitude in the vicinity of the polar axis. These shortcomings complicate the processing of the reflective waves received for imaging the targets. In this study, the back radiation is weakened by adding an acoustic soft material belt between the vibrating cap and the rigid baffle. And the fluctuation mentioned above is lowered remarkably by dividing the spherical cap radiator into many annuluses and a relatively smaller spherical cap, and by controlling the phase retardations of all elements appropriately. Furthermore, the numerical experiments are carried out by the finite element method (FEM) to prove the validity of the above methods.

关 键 词:spherical cap radiator acoustic soft material DIRECTIVITY 

分 类 号:TB657.5[一般工业技术—制冷工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象