Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures  

Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures

在线阅读下载全文

作  者:刘红侠 吴笑峰 胡仕刚 石立春 

机构地区:[1]School of Microelectronics,Xidian University,Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices of Ministry of Education

出  处:《Chinese Physics B》2010年第5期530-535,共6页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant Nos. 60936005 and 60976068);the New Century Excellent Talents of Ministry of Education of China (Grant No. NCET-05-0851);the Cultivation Fund of Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No. 708083);the Applied Materials Innovation Fund(Grant No. XA-AM-200701)

摘  要:Current transport mechanism in Ni-germanide/n-type Ge Schottky diodes is investigated using current-voltage characterisation technique with annealing temperatures from 300 ℃ to 500℃. Based on the current transport model, a simple method to extract parameters of the NiGe/Ge diode is presented by using the I-V characteristics. Parameters of NiGe/n-type Ge Schottky diodes fabricated for testing in this paper are as follows: the ideality factor n, the series resistance Rs, the zero-field barrier height Фb0, the interface state density Dit, and the interracial layer capacitance Ci. It is found that the ideality factor n of the diode increases with the increase of annealing temperature. As the temperature increases, the interface defects from the sputtering damage and the penetration of metallic states into the Ge energy gap are passivated, thus improving the junction quality. However, the undesirable crystallisations of Ni-germanide are observed together with NiGe at a temperature higher than 400℃. Depositing a very thin (-1 nm) heavily Ge-doped n+ Ge intermediate layer can improve the NiGe film morphology significantly.Current transport mechanism in Ni-germanide/n-type Ge Schottky diodes is investigated using current-voltage characterisation technique with annealing temperatures from 300 ℃ to 500℃. Based on the current transport model, a simple method to extract parameters of the NiGe/Ge diode is presented by using the I-V characteristics. Parameters of NiGe/n-type Ge Schottky diodes fabricated for testing in this paper are as follows: the ideality factor n, the series resistance Rs, the zero-field barrier height Фb0, the interface state density Dit, and the interracial layer capacitance Ci. It is found that the ideality factor n of the diode increases with the increase of annealing temperature. As the temperature increases, the interface defects from the sputtering damage and the penetration of metallic states into the Ge energy gap are passivated, thus improving the junction quality. However, the undesirable crystallisations of Ni-germanide are observed together with NiGe at a temperature higher than 400℃. Depositing a very thin (-1 nm) heavily Ge-doped n+ Ge intermediate layer can improve the NiGe film morphology significantly.

关 键 词:NiGe Schottky diode barrier height parameter extraction 

分 类 号:TN311.7[电子电信—物理电子学] TB383[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象