机构地区:[1]Department of Physics,Ningbo University
出 处:《Chinese Physics B》2010年第5期583-591,共9页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China (Grant Nos. 10805029 and 10947175);the Education Department of Natural Science Foundation of Zhejiang province of China (Grant No. Y200803420);the Science Foundation of Ningbo University (Grant No. xkl09057);sponsored by K.C.Wong Magna Fund in Ningbo University of China
摘 要:The electrostatic interaction of a charged spherical particle in the vicinity of an orifice plane has been investigated in this paper. The particle can creep along the axis of the orifice and is immersed in a bulk electrolyte. By solving the Poisson-Boltzmann problem, we have obtained the effective electrostatic interaction for several values of reduced orifice radius h, including the cases of h ~ 1, h = i and h 〈 1. Two kinds of boundary conditions of the orifice plane are considered. One is the constant potential model corresponding to a conducting plane, the other is the constant charge model. In the constant potential model, there is an electrostatic attraction between the particle and the orifice plane when they get close to each other, while there is a pure electrostatic repulsion in the constant charge model. The interactions in both boundary models are sensitive to the parameters of the reduced orifice radius, the reduced particle-rifice distance, surface charge densities of the particle and orifice plane, and the reduced Debye screen constant corresponding to the salt-ion concentration and ion valence.The electrostatic interaction of a charged spherical particle in the vicinity of an orifice plane has been investigated in this paper. The particle can creep along the axis of the orifice and is immersed in a bulk electrolyte. By solving the Poisson-Boltzmann problem, we have obtained the effective electrostatic interaction for several values of reduced orifice radius h, including the cases of h ~ 1, h = i and h 〈 1. Two kinds of boundary conditions of the orifice plane are considered. One is the constant potential model corresponding to a conducting plane, the other is the constant charge model. In the constant potential model, there is an electrostatic attraction between the particle and the orifice plane when they get close to each other, while there is a pure electrostatic repulsion in the constant charge model. The interactions in both boundary models are sensitive to the parameters of the reduced orifice radius, the reduced particle-rifice distance, surface charge densities of the particle and orifice plane, and the reduced Debye screen constant corresponding to the salt-ion concentration and ion valence.
关 键 词:colloid movement electrostatic interaction orifice radius particle-orifice distance
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...