检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王野平[1] 杨彦[1] 荆朝霞[1] 陈皓勇[1] 陈天恩
机构地区:[1]华南理工大学电力学院,广东广州510640 [2]西北电网有限公司,陕西西安710048
出 处:《华南理工大学学报(自然科学版)》2010年第3期109-113,122,共6页Journal of South China University of Technology(Natural Science Edition)
基 金:国家"973"计划项目(2004CB217905);教育部"新世纪优秀人才支持计划"资助项目(NCET080207)
摘 要:基于智能代理的模拟仿真方法已成为电力市场研究的一种新颖而有效的途径.文中结合某一实际区域电力市场模拟系统的构建,介绍了适合模拟发电厂商报价的智能代理学习算法,详细阐述了VRE learning算法、Q-learning算法以及贪婪算法在模拟系统中的运用及实现框架,并分别探讨了学习算法在代理报价收敛问题上的不同处理方式.算例结果表明,智能代理模型及学习算法能够模拟发电厂商的理性竞价行为.The intelligent agent-based simulation has become a novel and powerful tool in the study of electricity market. This paper deals with the construction of a simulation system of electricity market. In the investigation, first, the intelligent-agent learning algorithms suitable for simulating the strategic bidding of electricity firms are in- troduced. Next, the applications of the VRE-learning algorithm, the Q-learning algorithm and the greedy algorithm to the simulation system are illustrated, and the corresponding implementation frameworks are proposed. Then, the techniques for the learning algotrithms to handle the convergence of agent bidding are discussed. Finally, an exam- pie is performed to test the effectiveness of the intelligent agent-based simulation. The results indicate that the intel- ligent-agent learning algorithms are capable of simulating the rational bidding behavior of electricity firms.
关 键 词:电力市场 智能代理 仿真 VRE learning算法 Q-learning算法 贪婪算法
分 类 号:TM73[电气工程—电力系统及自动化] F123.9[经济管理—世界经济]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222