检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:严福升[1] 王志刚[1] 刘旭东[1] 刘志鹏[1] 张全启[1]
机构地区:[1]中国海洋大学海洋生命学院海洋生物遗传育种教育部重点实验室,青岛266003
出 处:《渔业科学进展》2010年第2期45-50,共6页Progress in Fishery Sciences
基 金:国家高技术研究发展计划(2006AA10A404);山东省良种工程重大课题共同资助
摘 要:随机选取3月龄牙鲆Paralichthys olivaceus100尾,分别测量全长(X1)、体长(X2)、头长(X3)、体厚(X4)和体高(X5)共5个形态学指标和体质量(Y)。通过SAS软件进行相关性分析和回归分析,分别计算以形态性状为自变量对体质量的通径系数和决定系数,进而对各性状对体质量的影响进行剖分。明确影响3月龄牙鲆体质量的主要形态性状,为牙鲆选育提供数据支持和理想的测度指标。结果表明,各形态性状间及与体质量的相关系数均达到极显著(P<0.01)。体长、体厚和体高对体质量的通径系数均达到极显著的水平(P<0.01);所选形态性状对体质量的决定系数R2=0.945,表明所选形态性状是影响3月龄牙鲆体质量的主要性状。通过对各形态性状偏回归系数的显著性检验,剔除不显著的性状自变量后,建立最优的多元回归方程:Y=-4.988+0.763X2+2.997X+1.089X,各偏回归系数均达到极显著水平(P<0.01)。One hundred 3-month aged Paralichthys olivaceus were randomly sampled for measuring five morphometric traits including full length (X1), body length (X2), head length (X3), body thickness (X4), body height (X5) and body weigh: (Y). Through path analysis and multiple linear regression with SAS 8.2 software,this study estimated the path coefficients and determination coefficients of each morphometric trait to body weight and dissected effect of each morphometric trait on body weight as direct effect and indirect effect. This study also confirmed the main morphometric traits influencing the body weight of 3-month aged P. olivaceus and provided data support and optimal measuring indexes for selective breeding of P. olivaceus. The results showed that the correlation coefficients between all morphometric traits and body weight were extremely significant (P〈0.01). The path coefficients of body length, body thickness and body width of 3-month aged P. olivaceus to body weight were all extremely significant (P〈0.01). The total determination coefficient (R^2) of all selected morphometric traits to body weight was 0. 945, Indicating that the morphometric traits included in this study were major factors influencing body weight. The insignificant morphometric traits were excluded through coefficient test of partial regression, and then the optimal multiple linear regression equation was established as Y=-4. 988+0. 763X2+2. 997X4 +1. 089X5, for which all included partial regression coefficients were extremely significant (P〈0.01).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43