检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]新疆大学数学与系统科学学院,新疆乌鲁木齐830046 [2]昌吉学院数学系,新疆昌吉831100
出 处:《山东大学学报(理学版)》2010年第4期36-38,共3页Journal of Shandong University(Natural Science)
摘 要:称图G是一个超爪,如果它同构于完全二部图K1,2。连接两个超爪的二度顶点而得到的图称为超双爪。一个图称为是超双爪无关图的,如果它没有导出的超双爪。证明了一个连通超双爪无关图的二部图G,当δ(G)≥4时是可折叠的,显然G是超欧拉的。最后,猜测定理1.1和1.2中的条件δ(G)≥4是最优的。A super-claw is a graph isomorphic to the complete bipartite graph K1,2,and a super-biclaw is defined as the graph obtained from two vertex disjoint super-claws adding an edge between the two vertices of degree 2 in each of the super-claws.A graph is called super-biclaw-free if it has no super-biclaw as an induced sub-graph.In this note,we prove that if G is a connected bipartite super-biclaw-free graph with δ(G)≥4,then G is collapsible,and of course supereulerian.Finally,we give a conjecture that the bound δ(G)≥4 in Theorem 1.1 and Theorem 1.2 is the best possible.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222