制度边界的粗集模型研究  被引量:6

On Rough Set Models of the Institutional Boundary

在线阅读下载全文

作  者:昝廷全[1] 杨婧婧[1] 

机构地区:[1]中国传媒大学中国系统经济学研究中心,北京100024

出  处:《中国传媒大学学报(自然科学版)》2010年第1期12-22,共11页Journal of Communication University of China:Science and Technology

基  金:教育部"新世纪优秀人才支持计划"资助(NCET-060191)

摘  要:本文首先构建了制度边界的粗集模型,定义并分析了制度边界粗集模型中具有政策意义的几个参数:制度的近似精度、粗糙度与制度的拓扑特征等,高层次经济系统可以以此评估制度的作用能力。提出了制度边界的操作方法——特化知识库,特化知识库提供了制度完善的新操作方法。制度变迁是制度的动态变化过程,表现为制度边界的迁移,特别地在行为论域中,制度变迁表现为制度曲线的位移与知识库的变化。本文基于S-粗集理论构建制度变迁的S-粗集模型,通过构建制度的单向迁移、单向对偶迁移以及双向迁移模型,研究了行为等价类的迁移方式。定义了制度边界的迁移过程中产生的消集合与副集合,并进一步指出,政府在进行制度的改革时,要尽量增加制度变迁过程中的消集合,同时减少制度变迁中产生的副集合。This article analyzed and described the institutional boundary by constructing rough set model of institutions.Then we defined several parameters that have interesting policy meanings in the rough sets model of institutional boundary: approximate accuracy of the institution,roughness and topology characteristics of the institution.What's more,this article had come to a conclusion: Specialized Knowledge is an important method to reduce the institutional boundary,which provides a new operation method to improve the institution. Institutional Change is a process of dynamic change of institutitons,expressed as the migration of the institutional boundary.Particularly in the behavior domain,institutional change is offset curionalve of institutions and changes in knowledge base.In this article,the authors constructed S-rough-set-based model of institutional changes,including one direction change,dual of one direction change and two direction change model of the institutin,studied the migration approach of behavior equal class.At last,we defined vanished set and assistant set,and pointed out that the Government in the institutional reform should maximize the number of vanished set on the institutional boundary,and at the same time reduce the formation of the assistant set.

关 键 词:制度边界 制度变迁 粗集 S-粗集 知识库 

分 类 号:F062.9[经济管理—政治经济学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象