基于双子空间跟踪及盲波束形成的GNSS抗干扰算法  被引量:3

GNSS Anti-Jam Algorithm with Dual Subspace Tracking and Blind Beamforming

在线阅读下载全文

作  者:钱林杰[1,2] 程翥[1] 石斌斌[1] 万建伟[1] 

机构地区:[1]国防科技大学电子科学与工程学院,长沙410073 [2]重庆通信学院,重庆400030

出  处:《宇航学报》2010年第4期1149-1155,共7页Journal of Astronautics

基  金:武器装备预研项目(41901140401)

摘  要:根据全球导航卫星系统(Global Navigation Satellite Systems,GNSS)卫星信号粗捕获(C/A)码的相关峰特点,提出基于双子空间跟踪及盲波束形成的GNSS抗干扰算法。首先通过噪声子空间跟踪将接收信号投影到噪声子空间进行干扰抑制,提高接收信号信干比(SIR)。然后利用指定卫星C/A码与干扰抑制信号进行相关运算,增强指定卫星信号的信噪比(SNR),结合一维信号子空间跟踪,获取指定卫星导向矢量,实现对干扰抑制信号形成波束指向的目的。本算法不需要知道传输的导航符号以及卫星方位,是一种盲自适应算法。由于采用低运算复杂度的子空间跟踪方法,降低了抗干扰接收机的运算负担,保证了算法的实时性要求。最后通过实验仿真验证了提出算法能够有效地对抗强干扰以及增强GNSS信号。In this paper,a GNSS anti-jam algorithm with dual subspace tracking and blind beamforming was introduced.It relied on the property of the correlative peaks of the coarse/acquisition(C/A) code of the satellite signals.It suppressed interference to improve the signal-to-interference ratio(SIR) by projecting the received signal into the noise subspace obtained through noise subspace tracking method.The resulting interference-free signal was then correlative processed by the locally generated C/A-code to improve the signal-to-noise ratio(SNR).To achieve high gains toward the satellite in the field of view,the proposed scheme obtained the steering vector of the desired satellite using one-dimensional(1-D) signal subspace tracking.The proposed method is a blind adaptive algorithm without requirement of information about navigation symbols or satellite locations.It also mitigates the computational burden on the receiver to guarantee real time implementation by adopting the low complexity subspace tracking method such as FDPM or FOOJA.Simulations have shown that the proposed algorithm is effective in combating strong interference and enhancing the GNSS signal.

关 键 词:全球导航卫星系统 子空间跟踪 干扰抑制 自适应波束形成 

分 类 号:TN820.1[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象