检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学信息科学与技术学院,成都610031
出 处:《计算机应用》2010年第3期796-798,共3页journal of Computer Applications
基 金:国家自然科学基金资助项目(60702025)
摘 要:针对现行异常声音识别算法复杂度高和特征识别率低的问题,将梅尔频率倒谱系数(MFCC)与短时能量混合特征应用到异常声音识别系统中。该混合特征使得高斯混合模型(GMM)分类器可获得比使用MFCC特征及其差分MFCC更好的分类性能。给出了系统实现的具体步骤,并通过仿真实验证明了该算法的有效性,分类器的平均识别率可达到90%以上,并且计算复杂度小。Concerning the high complexity and low rate in abnormal audio recognition,the abnormal audio recognition system based on the Mel-Frequency Cepstrum Coefficients(MFCC)and short-term energy was proposed.This feature vector made the Gaussian Mixture Model(GMM)classifier outperform MFCC and Differential MFCC features in classification.The classifier can achieve an average recognition rate of more than 90%,and small computational complexity.The steps of system implementation were elaborated.The simulation results prove the effectiveness of the proposed algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.24.183