检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆艳婷[1] 俞法明[1] 严文潮[1] 刘庆龙[1] 金庆生[1]
机构地区:[1]浙江省农业科学院作物与核技术利用研究所,浙江杭州310021
出 处:《生物数学学报》2010年第1期159-165,共7页Journal of Biomathematics
基 金:农业部公益性行业科研专项(200803034);浙江省科技项目(0406计划)
摘 要:为了满足籼稻品质快速分析的需求,本研究利用籼稻精米粉近红外光谱建立了直链淀粉含量、蛋白质含量、碱消值、垩白度的回归预测模型.结果表明,本研究提供的预测模型具有良好的测定效果,用偏最小二乘法(PLS)获得的籼稻精米粉直链淀粉含量、蛋白质含量、碱消值、垩白度的回归模型和交叉验证显示最优校正决定系数(R^2)和交叉检验均方误差(RMSECV)分别为0.9561、1.55,0.9510、0.258,0.9076、0.283,0.9014、4.14.说明所建的近红外光谱预测模型具有实用价值.In order to keep the demand of indica rice. quality analysis rapidly, the regression prediction models of rice amylose content, protein content, allkali spreading value and chalkiness were established from near-infrared spectral scanning data of milled rice powder. The results showed that the prediction models obtained in this study were of real determination effect. The prediction models derived from the partial least squares (PLS) and cross-certification for rice amylose content, protein contents, alkali spreading value and chalkiness indicated that the optimal calibration determination coefficient (R2) and cross-examination mean square errors (RMSECV) were 0.9561, 1.55; 0.9510, 0.258; 0.9076, 0.283; 0.9014, 4.14. That approved the near-infrared spectrum prediction models are of easy usage in practice.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28