量子遗传算法在多输出Reed-Muller逻辑电路最佳极性搜索中的应用  被引量:16

Application of Quantum Genetic Algorithm in Searching for Best Polarity of Multi-Output Reed-Muller Logic Circuits

在线阅读下载全文

作  者:汪鹏君[1,2,3] 李辉[1] 吴文晋[1] 王伶俐[2] 张小颖[2] 戴静[1] 

机构地区:[1]宁波大学电路与系统研究所,浙江宁波315211 [2]复旦大学专用集成电路与系统国家重点实验室,上海201203 [3]浙江大学数字技术及仪器研究所,浙江杭州310027

出  处:《电子学报》2010年第5期1058-1063,共6页Acta Electronica Sinica

基  金:国家自然科学基金(No.60676020;No.60776022);中国博士后科学基金(No.20090461355);浙江省博士后科研项目;宁波市自然科学基金(No.2008A610005);浙江省教育厅科研项目(No.20070859)

摘  要:量子遗传算法是一种融合量子计算和遗传算法优点的智能算法,常用于求解组合优化问题.本文给出多输出RM(Reed-Muller)逻辑电路最佳极性搜索方案,将量子遗传算法应用到多输出固定极性RM电路逻辑优化中.针对量子遗传算法易陷入局部极值的缺陷,结合群体灾变思想,提出一种基于量子遗传算法的多输出RM逻辑电路最佳极性搜索算法.最后对多个大规模PLA格式基准电路测试表明:该算法与基于遗传算法的最佳极性搜索相比,在优化能力、寻优性能和收敛速度等方面都有不同程度的提高.QGA(Quantum Genetic Algorithm) is an intelligent algorithm which colligates the advantages of quantum computation and GA( Genetic Algorithm), which is often used to solve combinatorial problems.In this paper,the method of best polarities of multi-output RM (Reed-Muller) logic circuits is given, and QGA is applied to the optimization of multi-output fixed-polarity RM logic, circuits. To deal with the defects of the easily immerging in partial minimum frequently, this paper proposes a QGA based multi-output RM best polarity search algorithm which combined with community disaster. Finally, through several large-scale PLA format benchmarks testing,results show that QGA based search algorithm has higher performance than GA based in optimization, search and convergence.

关 键 词:量子遗传算法 极性搜索 多输出RM电路 逻辑优化 

分 类 号:TP387[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象