检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学,秦皇岛066004
出 处:《中国机械工程》2010年第8期940-945,967,共7页China Mechanical Engineering
基 金:国家自然科学基金资助项目(50775198);河北省自然科学基金资助项目(E2008000812)
摘 要:针对轴向柱塞泵故障特征的模糊性和不完备性特点,提出一种多特征信息融合与贝叶斯网络相结合的故障诊断方法。该方法从柱塞泵采集的振动信号中提取出频域和幅域的多个故障特征,并将这些特征当作来自多个不同传感器的多源信息。利用贝叶斯参数估计算法进行多特征信息融合。通过构造贝叶斯网络并建立贝叶斯分类器来简化融合后的结果,通过最大后验概率估计值的计算进行故障识别。经过轴向柱塞泵多故障模式的诊断实验,验证了该方法能够有效地实现柱塞泵柱塞松靴和脱靴故障的诊断。Aiming at the fuzzy and incomplete nature of fault characteristics of axial piston pump,a method of Bayesian networks and multi-characteristic information fusion was proposed.Firstly,multi-fault characteristics in the frequency domain and amplitude domain were extracted from vibration signals and regarded,as multi-source informations coming from different sensors.Then,Bayesian parameter estimation algorithm was applied to fuse multi-characteristic information.Next,the fusion result was simplified by constructing a Bayesian network and establishing Bayesian classifier.Finally,through calculating the maximum posterior probability estimation and the fault patterns were identified.The validity of this method was verified through experiments of multi-fault patterns on an axial piston pump.
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222