Large Deviations and Moderate Deviations for Kernel Density Estimators of Directional Data  被引量:1

Large Deviations and Moderate Deviations for Kernel Density Estimators of Directional Data

在线阅读下载全文

作  者:Fu Qing GAO Li Na LI 

机构地区:[1]School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China [2]Department of Mathematics, Tongji University, Shanghai 200092, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2010年第5期937-950,共14页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China (Grant No. 10571139)

摘  要:Let fn be the non-parametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere Sd-1. It is proved that if the kernel function is a function with bounded variation and the density function f of the random variables is continuous, then large deviation principle and moderate deviation principle for {sup x∈sd-1 |fn(x) - E(fn(x))|, n ≥ 1} hold.Let fn be the non-parametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere Sd-1. It is proved that if the kernel function is a function with bounded variation and the density function f of the random variables is continuous, then large deviation principle and moderate deviation principle for {sup x∈sd-1 |fn(x) - E(fn(x))|, n ≥ 1} hold.

关 键 词:kernel density estimator directional data moderate deviations large deviations 

分 类 号:O211.4[理学—概率论与数理统计] S792.17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象