检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学计算机科学与工程学院,广州510006 [2]深圳市华仁达电子有限公司,深圳518040
出 处:《科学技术与工程》2010年第14期3344-3348,共5页Science Technology and Engineering
基 金:国家自然科学基金(60573019);国家科技支撑计划(X2JSB1080010)资助
摘 要:为了去除图像模糊的同时,保持图像边缘等细节信息,需要对原始图像和点扩散函数进行准确的估计。在贝叶斯框架下,基于总变分模型,建立原始图像和点扩散函数的先验模型,同步估计原始图像和点扩散函数。对于总变分模型不可微分的问题,在不影响速度的前提下,用迭代重加权范数算法处理该问题。基于共轭分布理论,提出以伽马分布作为未知参数的先验模型,准确估计参数。实验表明该算法在对原始图像、点扩散函数和参数准确估计的基础上,成功地解决了模糊图像的盲去卷积问题,算法的速度和效果都得到了改进。与同类算法相比,本文提出的算法具有一定优势。For the purpose of deblurring the blurred images without the loss of the detailed information as edges,it was necessary to estimate the original image and point spread functions accurately.A Bayesian framework is proposed based algorithm which used the total variation model to describe the original image.The total variation could preserve the edges of deblurred images,while it was non-differentiable.Therefore,the Iteratively Reweighted Norm method is utilized to solve this problem.Based on the conjcept of the prior distribution,the Gamma distribution was introduced as the prior models of the unknown model parameters.The experimental results show the competitive performance of the proposed algorithm.With the accurate estimation of the original image and unknown model parameters,the blind deconvolution can be implemented successfully.The speed of the proposed algorithm and the results of the deconvolution are all improved obviously.Compared with the similar algorithm,the proposed algorithm has some advantages.
关 键 词:图像盲去卷积 贝叶斯框架 先验模型 总变分模型 数值计算
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117