检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学计算机科学与技术学院,天津300072
出 处:《模式识别与人工智能》2010年第2期154-159,共6页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金资助项目(No.60678049)
摘 要:基于不完全泛函迭代,设计一个均值场区间传播算法,可给出变量期望界.首先,定义Ising均值场计算树模型来表示Ising均值场迭代计算过程.然后,基于Ising计算树设计均值场区间传播算法,通过在计算树上进行消息区间传播,计算出根变量簇变量期望区间.同时证明在2层计算树上区间传播算法给出的变量期望区间包含期望精确值,即给出变量期望界.最后,通过对比实验验证该算法的有效性和期望界的紧致性.A mean filed interval propagation algorithm is designed based on incomplete functional iterations. This algorithm can yield the expectation bound of variables. Firstly, a concept of computation tree is proposed to reveal the iteration computation process of Ising mean field. Then, a mean field interval propagation algorithm based on the Ising computation tree is put forward, which propagates message intervals through the computation tree and presents the mean intervals of random variables in root node. It is proved that the variable mean interval computed by the interval propagation algorithm with 2-layer computation tree contains the exact value, called the mean bound of random variable. Finally, theoretical and experimental results show that the interval propagation algorithm is valid and the mean bound is tight.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.5.184