关于v-Noether环  被引量:1

On v-Noetherian Rings

在线阅读下载全文

作  者:田艳[1] 王芳贵[1] 

机构地区:[1]四川师范大学数学与软件科学学院,四川成都610066

出  处:《四川师范大学学报(自然科学版)》2010年第3期295-297,共3页Journal of Sichuan Normal University(Natural Science)

基  金:国家自然科学基金(10671137);教育部博士点专项科研基金(20060636001)资助项目

摘  要:Mori整环是v-理想满足升链条件的整环,将其研究扩大到有零因子的交换环上.v-Noether环被定义为v-理想满足升链条件的交换环.若R是v-Noether环,P是素理想,则R[P]是v-Noether环.而且还得到:若R中每个非零理想都被包含在至多有限个极大t-理想中,R是v-Noether环当且仅当对于每个极大t-理想M而言,R[M]都是v-Noether环.A Mori domain is an integral domain which satisfies the ascending chain condition on v-ideals.In this paper the study is extended to commutative rings with zero divisors.A v-Noetherian ring is defined to be a ring which satisfies the ascending chain condition on v-ideals.We prove that if R is a v-Noetherian ring and P is a prime ideal,then R[P] is a v-Noetherian ring.Moreover we also show that if each nonzero ideal is contained in at most finitely many maximal t-ideals,then R is a v-Noetherian ring if and only if for each maximal t-ideal M,R[M] is a v-Noetherian ring.

关 键 词:v-理想 t-理想 v-Noether环 

分 类 号:O154[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象