检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《振动与冲击》2010年第5期141-146,共6页Journal of Vibration and Shock
基 金:国家自然科学基金重点项目(50638010)
摘 要:根据拉格朗日运动方程推导了两端固定的安装了压重或失谐摆这两种防舞器的覆冰输电导线舞动的非线性微分方程组;提出了临界风速的计算方法;采用龙格—库塔方法在时域中直接求解舞动非线性微分方程组得到舞动振幅的时间历程。以某试验导线作为算例,研究结果表明:当输电导线的扭转频率与横风向频率接近时扭转舞动可以激发横风向舞动;当风速位于某一范围之内时导线舞动的振幅比较大;导线舞动振幅随导线垂度显著变化,并存在一个最不利垂度或最不利张力使导线舞动振幅达到最大;压重防舞可以减小但不能消除导线的舞动,而失谐摆防舞器可以完全消除导线的舞动。The non-linear differential equations of iced transmission line galloping were derived with Lagrange equation for the fixed-fixed transmission lines installed with masses or detuning pendulums.The method to calculate the critical wind velocity was proposed.The non-linear differential equations were solved by Runge-Kutta method to get the galloping response in time domain.A tested transmission line was calculated and analyzed as an example.The results showed that the torsional galloping can cause lateral galloping when their vibration frequencies are close to each other;the amplitude of galloping is relatively large when the wind velocity is in a certain range;the galloping amplitude changes with the conductor sag significantly and there exists the worst sag to cause the largest galloping amplitude;the method to prevent galloping with masses can reduce but not suppress the amplitude of galloping;but the method to prevent galloping with detuning pendulums can eliminate galloping completely.
分 类 号:TM726.3[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28