检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学计算机科学与工程学院,广东广州510006
出 处:《计算机工程与设计》2010年第10期2270-2272,2375,共4页Computer Engineering and Design
摘 要:针对传统K-均值聚类算法需要事先确定聚类数,以及对初始质心的选择具有敏感性,从而容易陷入局部极值点的缺陷,定义了簇间相似度度量对传统K-均值聚类进行改进。新算法可以在事先不确定K值的情况下,根据欧氏距离选取初始质心并按照K均值算法聚类,然后过滤噪声样本并确定簇半径,计算簇间相似度并合并相似簇确定数据集的类别数并得到较优的聚类结果。通过在UCI数据集的实验结果表明,新算法能准确确定类别数并有高于传统K均值算法聚类精度。The traditional K-means clustering algorithm has two drawbacks.One is that the number of clusters must be known in advance and the other is that the clustering result is sensitive to the selection of initial cluster centroids and this may make the algorithm converge to the local optima.An improved K-means based on the definition of a similarity measure between clusters is brought forward.Although the value of K is unknown,the new algorithm can determine the number of classes and supply a pretty good clustering result through the following steps:Select the initial center of mass,K-means clustering,filtering noising sample and calculate the similarity matrix between clusters and merge the similar clusters.The experimental results on UCI data sets show that the new method could accurately determine the number of classes and get a better clustering accuracy.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222