High precision Zernike modal gray map reconstruction for liquid crystal corrector  被引量:2

High precision Zernike modal gray map reconstruction for liquid crystal corrector

在线阅读下载全文

作  者:刘超 穆全全 胡立发 曹召良 宣丽 

机构地区:[1]State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences [2]Graduate School of the Chinese Academy of Sciences

出  处:《Chinese Physics B》2010年第6期367-374,共8页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grants Nos.60736042,60578035 and 50703039);Science and Technology Cooperation Project between Chinese Academy of Sciences and Jilin Province (Grant No.2008SYHZ0005)

摘  要:This paper proposes a new Zernike modal gray map reconstruction algorithm used in the nematic liquid crystal adaptive optics system. Firstly, the new modal algorithm is described. Secondly, a single loop correction experiment was conducted, and it showed that the modal method has a higher precision in gray map reconstruction than the widely used slope method. Finally, the contrast close-loop correction experiment was conducted to correct static aberration in the laboratory. The experimental results showed that the average peak to valley (PV) and root mean square (RMS) of the wavefront corrected by mode method were reduced from 2.501A (λ= 633 nm) and 0.610A to 0.0334λ and 0.00845A, respectively. The corrected PV and RMS were much smaller than those of 0.173A and 0.048A by slope method. The Strehl ratio and modulation transfer function of the system corrected by mode method were much closer to diffraction limit than with slope method. These results indicate that the mode method can take good advantage of the large number of pixels of the liquid crystal corrector to realize high correction precision.This paper proposes a new Zernike modal gray map reconstruction algorithm used in the nematic liquid crystal adaptive optics system. Firstly, the new modal algorithm is described. Secondly, a single loop correction experiment was conducted, and it showed that the modal method has a higher precision in gray map reconstruction than the widely used slope method. Finally, the contrast close-loop correction experiment was conducted to correct static aberration in the laboratory. The experimental results showed that the average peak to valley (PV) and root mean square (RMS) of the wavefront corrected by mode method were reduced from 2.501A (λ= 633 nm) and 0.610A to 0.0334λ and 0.00845A, respectively. The corrected PV and RMS were much smaller than those of 0.173A and 0.048A by slope method. The Strehl ratio and modulation transfer function of the system corrected by mode method were much closer to diffraction limit than with slope method. These results indicate that the mode method can take good advantage of the large number of pixels of the liquid crystal corrector to realize high correction precision.

关 键 词:liquid crystal device adaptive optics modal gray map reconstruction 

分 类 号:O753.2[理学—晶体学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象