检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国林业科学研究院资源信息研究所,北京100091 [2]吉林省林业调查规划院,长春130022
出 处:《第四纪研究》2010年第3期559-565,共7页Quaternary Sciences
基 金:中央级公益性科研院所基本科研业务费号项项目(批准号:IFRIT200901);"十一五"科技支撑课题(批准号:2006BAD03A0802)资助
摘 要:基于东北过伐林区吉林省汪清林业局187块蒙古栎林的样地调查数据,结合单木生物量模型,研究蒙古栎林的林分生物量和估计模型。结果表明:蒙古栎林的平均生物量为:树干178.73Mg/hm^2,树枝13.766Mg/hm^2,树叶5.159Mg/hm^2,树根29.373Mg/hm^2,全部为227.028Mg/hm^2。采用联立方程组方法,建立了相容性林分生物量模型。该模型包括树干、树枝、树叶、根和全部各分量,自变量为林分公顷株数和断面积。各模型的预估精度均在95%以上,95%的误差分布在[-24.144,23.712],[-5.146,5.578],[-1.743,1.919],[-3.493,3.440]和[-30.156,30.166](置信水平为95%)。由于模型的自变量林分公顷株数和断面积是森林调查中的常规因子,也是传统森林生长收获模型中的重要变量,因此,一方面可利用建立的模型和固定样地通过统计推断获得森林经营单位或区域尺度的森林生物量,或基于小班调查数据进行估箅;另一方面可以和传统的生长收获模型相结合,预测林分生物量的变化。为气候变化下林分、森林经营单位和区域生物量和碳贮量的计量和预测提供了方法和依据。This study presented stand biomass and its estimation models for Mongolia oak forests in over-logged forest regions,North East China. The data used was from 187 sample plots in Wangqing Forestry Bureau (43°05′- 43°40′N, 129°59′- 131°40′E, a. s. 1. 400m - 935m), Jilin Province. The stand biomass of Mongolia oak forests including their components of stem, branch,foliage and root was estimated from developed individual tree biomass allometric equations. The average stand biomass is 178.73 Mg/hm^2 for stem, 13. 766Mg/hm^2 for branch,5. 159 Mg/hm^2 for foliage, 29. 373 Mg/hm^2 for root, and 227. 028 Mg/hm^2 for total. Compatible stand biomass models established by simultaneous equations take the basal area and the number of trees per hectare as their explanatory variables. The preeisions of all models were beyond 95% and most errors(95% )associated with biomass estimation were within the following limits ( a 95% confidence level) : [ - 24. 144,23. 712 ] for stem, [ - 5. 146,5. 578 ] for branch, [ - 1. 743,1.919 ] for foliage, [ - 3. 493,3. 440 ] for root, and [ -30. 156,30. 166 ] for total stand. The stand basal area and the density are common parameters in the forest inventory and important variables in the growth and yield modeling,so the models have potentials not only to biomass estimation, but also to biomass prediction. They provided methods and references for the biomass and carbon accounting and modeling under climate change.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.119