检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓斌[1] 邵培基[1] 刘名武[1] 夏国恩[1,2]
机构地区:[1]电子科技大学经济与管理学院,四川成都610054 [2]广西财经学院工商管理系,广西南宁530003
出 处:《系统工程》2010年第3期103-107,共5页Systems Engineering
基 金:国家自然科学基金资助项目(70801021);教育部人文社会科学资助项目(08JC630019)
摘 要:k-近邻(KNN)算法具有直观、无需先验统计知识、无监督学习等优点。多维度数据存在边界模糊性,这导致集合元素隶属关系的不确定,传统KNN算法不能有效地进行分类。本文提出利用模糊测度加强不确定性特征信息的量化,建立基于模糊测度的k近邻分类算法(FM-KNN)。先通过构建证据理论(Dempster-Shafer Theory)模糊测度函数,解决证据理论非单调性等问题;再利用证据模糊测度对多维度属性的不确定信息进行量化计算,通过支持信度确定样本分类规则。通过对比实验表明,在多维度样本数据分类方面FM-KNN算法比其他KNN分类算法有着更好的效果。k-nearest neighbor (KNN) algorithm has many advantages such as intuitiveness, requiring no prior knowledge of statistics, unsupervised learning, etc, but it cannot deal effectively with the multi-dimension data sample which uncertainty of subordinate relationship due to the fuzziness of boundary element set. This paper presents a fuzzy measures k-Nearest Neighbor (FM-KNN), which applies fuzzy measures to strengthen the quantitative uncertainty characteristic information. The main idea is stated as follows: firstly we use fuzzy measure to solve non-monotonic of Dempster-Shafer Evidence Theory; then we quantify the uncertainty calculation about multi-dimensional attribute information by using of new Dempster-Shafer fuzzy measure function; finally we determine FM-KNN classification rules by a sample of support reliability. The results show that FM-KNN is better than other KNN in the multi-dimensional data classification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.54