检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜晋平[1] 杨晓林[1] 殷裕斌[1] 李助南[1] 曹志华[1]
出 处:《长江大学学报(自科版)(中旬)》2010年第1期19-24,共6页Journal of Yangtze University(Nature Science Edition)
基 金:国家支撑项目(2006BAD12B02-06;2008BADA7B04)
摘 要:通过2个动物试验比较了康奈尔净碳水化合物和蛋白系统(CNCPS)模型预测的我国杂种肉牛干物质采食量(DMI)与实际观察值间的吻合程度,目的在于评估该模型是否适合于预测我国杂种肉牛生产性能。试验1选用45头西门塔尔(♂)与蒙古牛(♀)杂交一代公牛随机分为3个组,每组15头;试验2选用60头利木赞(♂)与福州牛(♀)杂交二代公牛,随机分为4个组,每组15头。各组中所有牛DMI实际观测平均值作为该组牛DMI值,随后对模型预测的结果与实际观测值进行了比较。结果表明:(1)试验1中3个处理组分别有93%、80%和73%的点落在95%的置信区间内,试验2的4个处理组分别有87%、73%、73%和80%的点落在95%的置信区间内,说明CNCPS较好地预测了我国杂种肉牛的DMI。(2)经线性回归分析,2个试验中观察和预测的DMI间相关系数分别为0.83和0.79,具有较高的可信度;所有处理组的DMI误差均方根(RMSE)都较小。由此说明,CNCPS对中国杂种肉牛DMI具有较好的预测能力。Two separate animal trials were conducted to evaluate the coincidence of dry matter intake(DMI) values predicted by CNCPS V 5.0 and observed values.In trial 1,45 growing Simmental(♂) × Mengolia(♀) crossbred F1 bulls were assigned to three treatments with 15 animals in each treatment.Trial 2 was conducted with 60 Limousin(♂) × Fuzhou(♀) crossbred F2 bulls allocated to 4 treatments.DMI for each bull was measured as a mean of each treatment.Subsequently,model predicted dry matter(DM) intakes were compared with these actually recorded results.The results showed that three treatments in trial 1 had 93%,80%,and 73% of predicted points fell within a 95% confidence interval respectively.Similarly,four treatments in trial 2,about 87%,73%,73%,and 80% predicted points fell within these ranges,respectively.It suggested that the CNCPS model could accurately predict DMI in these trials.By regression analysis,acceptable values of R2(R2=0.83 and 0.79 for trial 1 and trial 2,respectively) and small root mean square error(RMSE) values of all treatments were obtained.It indicated that the CNCPS model could be precisely used to predict DMI of China's crossbred beef.
关 键 词:康奈尔净碳水化合物和蛋白质体系模型 杂种肉牛 干物质采食量 预测评估
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.226